Musings of an Energy Nerd

Calculating the Global Warming Impact of Insulation

Posted on May 27, 2011 by Martin Holladay, GBA Advisor

In June 2010, Alex Wilson published a ground-breaking article, “Avoiding the Global Warming Impact of Insulation,” in Environmental Building News. In the article, Wilson examined the implications of the fact that the HFC blowing agents used to make extruded polystyrene (XPSExtruded polystyrene. Highly insulating, water-resistant rigid foam insulation that is widely used above and below grade, such as on exterior walls and underneath concrete floor slabs. In North America, XPS is made with ozone-depleting HCFC-142b. XPS has higher density and R-value and lower vapor permeability than EPS rigid insulation.) and most types of closed-cell spray polyurethane foam have a much greater global warming impact than CO2.

Nailing Window Flanges Through Foam

Posted on May 20, 2011 by Martin Holladay, GBA Advisor

Over 30 years ago, when builders first began installing rigid foam wall sheathingMaterial, usually plywood or oriented strand board (OSB), but sometimes wooden boards, installed on the exterior of wall studs, rafters, or roof trusses; siding or roofing installed on the sheathing—sometimes over strapping to create a rainscreen. , they had to figure out their own methods of fastening flanged windows. In 1982, when I sheathed my house with 1-inch-thick EPSExpanded polystyrene. Type of rigid foam insulation that, unlike extruded polystyrene (XPS), does not contain ozone-depleting HCFCs. EPS frequently has a high recycled content. Its vapor permeability is higher and its R-value lower than XPS insulation. EPS insulation is classified by type: Type I is lowest in density and strength and Type X is highest., I installed “picture frames” of 1-inch lumber around each window rough opening. As it turned out, Joe Lstiburek was also building a foam-sheathed house in 1982, but he used a different approach.

Building an Unvented Crawl Space

Posted on May 13, 2011 by Martin Holladay, GBA Advisor

Residential foundations vary widely from one corner of the U.S. to another. Builders in some regions love basements, while builders in other regions swear by slabs on grade. Although most builders have a theory to explain these regional preferences, the main reason for these variations is habit, not logic. In areas of the country where basements are rare, there usually aren’t any technical barriers to building basements; and up north, where basements rule, it’s perfectly possible to build on a slab.

Alternatives to Clothes Dryers

Posted on May 6, 2011 by Martin Holladay, GBA Advisor

UPDATED on 9/17/2012 with new information on dehumidifiers for clothes-drying rooms.

In an American home with a relatively new refrigerator, the clothes dryer usually uses more energy than any other home appliance. An electric clothes dryer draws between 4,000 and 6,000 watts, and costs about 60 cents an hour — about $158 per year, on average — to operate. While a gas dryer may only draw 400 watts of electricity, it also consumes a significant amount of natural gas or propane to dry each load of laundry.

Can ‘Passive House’ Be Trademarked?

Posted on April 29, 2011 by Martin Holladay, GBA Advisor

UPDATED on 4/3/2012

Can the phrase “passive house” be trademarked? If the answer is yes, has any organization claimed the trademark yet?

A New Way to Duct HRVs

Posted on April 22, 2011 by Martin Holladay, GBA Advisor

UPDATED June 27, 2013 with an author's postscript

More Passivhaus Site Visits in Washington State

Posted on April 15, 2011 by Martin Holladay, GBA Advisor

This blog, a report on my three-day visit to Passivhaus construction sites and the Passive HouseA residential building construction standard requiring very low levels of air leakage, very high levels of insulation, and windows with a very low U-factor. Developed in the early 1990s by Bo Adamson and Wolfgang Feist, the standard is now promoted by the Passivhaus Institut in Darmstadt, Germany. To meet the standard, a home must have an infiltration rate no greater than 0.60 AC/H @ 50 pascals, a maximum annual heating energy use of 15 kWh per square meter (4,755 Btu per square foot), a maximum annual cooling energy use of 15 kWh per square meter (1.39 kWh per square foot), and maximum source energy use for all purposes of 120 kWh per square meter (11.1 kWh per square foot). The standard recommends, but does not require, a maximum design heating load of 10 W per square meter and windows with a maximum U-factor of 0.14. The Passivhaus standard was developed for buildings in central and northern Europe; efforts are underway to clarify the best techniques to achieve the standard for buildings in hot climates. Northwest conference in Washington state, picks up where last week’s blog left off.

Visiting Passivhaus Job Sites in Washington State

Posted on April 8, 2011 by Martin Holladay, GBA Advisor

On March 16, 2011, I flew to Seattle for a three-day visit to Washington state. Although the main purpose of my visit was to attend the spring conference of Passive HouseA residential building construction standard requiring very low levels of air leakage, very high levels of insulation, and windows with a very low U-factor. Developed in the early 1990s by Bo Adamson and Wolfgang Feist, the standard is now promoted by the Passivhaus Institut in Darmstadt, Germany. To meet the standard, a home must have an infiltration rate no greater than 0.60 AC/H @ 50 pascals, a maximum annual heating energy use of 15 kWh per square meter (4,755 Btu per square foot), a maximum annual cooling energy use of 15 kWh per square meter (1.39 kWh per square foot), and maximum source energy use for all purposes of 120 kWh per square meter (11.1 kWh per square foot). The standard recommends, but does not require, a maximum design heating load of 10 W per square meter and windows with a maximum U-factor of 0.14. The Passivhaus standard was developed for buildings in central and northern Europe; efforts are underway to clarify the best techniques to achieve the standard for buildings in hot climates. Northwest, I devoted a day and a half to visiting Passivhaus buildings and construction sites in Seattle and Olympia. With the help of my gracious hosts, Dan Whitmore and Albert Rooks, I was able to see four Passivhaus sites and a large workshop where Passivhaus wall panels were being assembled indoors.

Are Passivhaus Requirements Logical or Arbitrary?

Posted on April 1, 2011 by Martin Holladay, GBA Advisor

What follows is a reconstruction of Martin Holladay’s keynote address at the Passive HouseA residential building construction standard requiring very low levels of air leakage, very high levels of insulation, and windows with a very low U-factor. Developed in the early 1990s by Bo Adamson and Wolfgang Feist, the standard is now promoted by the Passivhaus Institut in Darmstadt, Germany. To meet the standard, a home must have an infiltration rate no greater than 0.60 AC/H @ 50 pascals, a maximum annual heating energy use of 15 kWh per square meter (4,755 Btu per square foot), a maximum annual cooling energy use of 15 kWh per square meter (1.39 kWh per square foot), and maximum source energy use for all purposes of 120 kWh per square meter (11.1 kWh per square foot). The standard recommends, but does not require, a maximum design heating load of 10 W per square meter and windows with a maximum U-factor of 0.14. The Passivhaus standard was developed for buildings in central and northern Europe; efforts are underway to clarify the best techniques to achieve the standard for buildings in hot climates. Northwest conference in Olympia, Washington, on March 18, 2011. The piece has been fleshed out somewhat, in light of the fact that the original time constraints no longer apply. For the most part, each paragraph corresponds to one slide of the accompanying PowerPoint presentation.

Click here to view the presentation slides

Are Passivhaus requirements logical or arbitrary?

New Green Building Products — March 2011

Posted on March 25, 2011 by Martin Holladay, GBA Advisor

It’s been about six months since my last roundup of new green building products. This time I’ll look at two ventilation products (an HRV(HRV). Balanced ventilation system in which most of the heat from outgoing exhaust air is transferred to incoming fresh air via an air-to-air heat exchanger; a similar device, an energy-recovery ventilator, also transfers water vapor. HRVs recover 50% to 80% of the heat in exhausted air. In hot climates, the function is reversed so that the cooler inside air reduces the temperature of the incoming hot air. and a fan), a pressure-balancing grille, and an inexpensive camera to inspect difficult-to-reach areas. I’ll also mention four new North American distributors of European PassivhausA residential building construction standard requiring very low levels of air leakage, very high levels of insulation, and windows with a very low U-factor. Developed in the early 1990s by Bo Adamson and Wolfgang Feist, the standard is now promoted by the Passivhaus Institut in Darmstadt, Germany. To meet the standard, a home must have an infiltration rate no greater than 0.60 AC/H @ 50 pascals, a maximum annual heating energy use of 15 kWh per square meter (4,755 Btu per square foot), a maximum annual cooling energy use of 15 kWh per square meter (1.39 kWh per square foot), and maximum source energy use for all purposes of 120 kWh per square meter (11.1 kWh per square foot). The standard recommends, but does not require, a maximum design heating load of 10 W per square meter and windows with a maximum U-factor of 0.14. The Passivhaus standard was developed for buildings in central and northern Europe; efforts are underway to clarify the best techniques to achieve the standard for buildings in hot climates.-certified windows.

Register for a free account and join the conversation


Get a free account and join the conversation!
Become a GBA PRO!

Syndicate content