Musings of an Energy Nerd

All About Glazing Options

Posted on December 3, 2010 by Martin Holladay, GBA Advisor

Everybody has an opinion on windows, and there’s a lot to talk about. Which frame material do you prefer: wood or fiberglass? Do you like double-hungs, sliders, or casements? Who provides better warranty service, Marvin or Pella?

Window selection is a complicated topic, so I'll approach the issue in small bites. In this article I’ll focus on glazingWhen referring to windows or doors, the transparent or translucent layer that transmits light. High-performance glazing may include multiple layers of glass or plastic, low-e coatings, and low-conductivity gas fill..

Fastening Furring Strips to a Foam-Sheathed Wall

Posted on November 26, 2010 by Martin Holladay, GBA Advisor

UPDATED March 1, 2012

If you’re building a house with foam sheathingMaterial, usually plywood or oriented strand board (OSB), but sometimes wooden boards, installed on the exterior of wall studs, rafters, or roof trusses; siding or roofing installed on the sheathing—sometimes over strapping to create a rainscreen. , and your siding is installed over vertical rainscreenConstruction detail appropriate for all but the driest climates to prevent moisture entry and to extend the life of siding and sheathing materials; most commonly produced by installing thin strapping to hold the siding away from the sheathing by a quarter-inch to three-quarters of an inch. strapping installed on top of the foam, how should you attach the strapping? Most builders screw the strapping through the foam into the studs; so far, so good. But what length screws should you use? And how closely should you space the screws?

Makeup Air for Range Hoods

Posted on November 19, 2010 by Martin Holladay, GBA Advisor

Most homes have several exhaust appliances. These typically include a bathroom fan (40-200 cfm), a clothes dryer (100-225 cfm), and perhaps a power-vented water heater (50 cfm), a wood stove (30-50 cfm), or a central vacuum cleaning system (100-200 cfm). But the most powerful exhaust appliance in most homes is the kitchen range-hood fan (100-1,200 cfm).

To Install Stucco Right, Include an Air Gap

Posted on November 12, 2010 by Martin Holladay, GBA Advisor

In many areas of the country, hundreds of stucco-clad homes have suffered wall rot. Although building scientists are still researching the causes of wall rot behind stucco, it’s clear that all of these walls got wet and were unable to dry.

How Risky Is Cold OSB Wall Sheathing?

Posted on November 5, 2010 by Martin Holladay, GBA Advisor

During the winter months, wall sheathingMaterial, usually plywood or oriented strand board (OSB), but sometimes wooden boards, installed on the exterior of wall studs, rafters, or roof trusses; siding or roofing installed on the sheathing—sometimes over strapping to create a rainscreen. is usually cold. Cold sheathing is risky, since it tends to accumulate moisture during the winter. Unless the sheathing can dry out during the summer months, damp sheathing can rot.

A Conversation With Wolfgang Feist

Posted on October 27, 2010 by Martin Holladay, GBA Advisor

Dr. Wolfgang Feist, the physicist and founder of the Passivhaus Institut in Darmstadt, Germany, began his U.S. speaking tour with a presentation and panel discussion at the Boston Architectural College on October 23, 2010. Among the other speakers at the event were Katrin Klingenberg, the founder of the Passive HouseA residential building construction standard requiring very low levels of air leakage, very high levels of insulation, and windows with a very low U-factor. Developed in the early 1990s by Bo Adamson and Wolfgang Feist, the standard is now promoted by the Passivhaus Institut in Darmstadt, Germany. To meet the standard, a home must have an infiltration rate no greater than 0.60 AC/H @ 50 pascals, a maximum annual heating energy use of 15 kWh per square meter (4,755 Btu per square foot), a maximum annual cooling energy use of 15 kWh per square meter (1.39 kWh per square foot), and maximum source energy use for all purposes of 120 kWh per square meter (11.1 kWh per square foot). The standard recommends, but does not require, a maximum design heating load of 10 W per square meter and windows with a maximum U-factor of 0.14. The Passivhaus standard was developed for buildings in central and northern Europe; efforts are underway to clarify the best techniques to achieve the standard for buildings in hot climates. Institute U.S. in Urbana, Illinois.

Navigating Energy Star’s Thermal Bypass Checklist

Posted on October 22, 2010 by Martin Holladay, GBA Advisor

If you’ve ever built an Energy StarLabeling system sponsored by the Environmental Protection Agency and the US Department of Energy for labeling the most energy-efficient products on the market; applies to a wide range of products, from computers and office equipment to refrigerators and air conditioners. home, then you’re familiar with the Thermal Bypass Checklist. Originally adopted on July 1, 2006, the Checklist identifies areas in homes under construction that must be inspected by a certified rater for a house to qualify for an Energy Star label.

Calculating the Minimum Thickness of Rigid Foam Sheathing

Posted on October 15, 2010 by Martin Holladay, GBA Advisor

UPDATED on August 26, 2014 with new information on flash-and-batt requirements in the 2012 IRCInternational Residential Code. The one- and two-family dwelling model building code copyrighted by the International Code Council. The IRC is meant to be a stand-alone code compatible with the three national building codes—the Building Officials and Code Administrators (BOCA) National code, the Southern Building Code Congress International (SBCCI) code and the International Conference of Building Officials (ICBO) code.

If you plan to install exterior rigid foam on the walls of your house, how thick should the foam be? Although the GBAGreenBuildingAdvisor.com Web site has addressed this question several times in our Q&A column and various blogs, the question continues to perplex readers. New questions along these lines come our way regularly.

The last time I answered the question was at the end of a long, very technical blog. In this blog, I'll cut to the chase.

The History of Superinsulated Houses in North America

Posted on October 10, 2010 by Martin Holladay, GBA Advisor

Several GBA readers have requested a copy of a presentation on “The History of Superinsulated Houses in North America” that I gave at the 14th Annual Westford Symposium on Building Science (August 3, 2010). I also gave the presentation at the annual meeting of the British Columbia Building Envelope Council in Vancouver (September 22, 2010).

Here it is:
The History of Superinsulated Houses in North America

For more on the topic, check out two blogs with overlapping content:

Solar Versus Superinsulation: A 30-Year-Old Debate

Posted on October 8, 2010 by Martin Holladay, GBA Advisor

The oil price shock of 1973 sparked a burst of interest in “solar houses.” During the 1970s, owner-builders all over the U.S. erected homes with extensive south-facing glazingWhen referring to windows or doors, the transparent or translucent layer that transmits light. High-performance glazing may include multiple layers of glass or plastic, low-e coatings, and low-conductivity gas fill. — sometimes sloped, sometimes vertical. Many of these houses included added thermal massHeavy, high-heat-capacity material that can absorb and store a significant amount of heat; used in passive solar heating to keep the house warm at night. — concrete floors, concrete-block walls, or 55-gallon drums filled with water.

Register for a free account and join the conversation


Get a free account and join the conversation!
Become a GBA PRO!

Syndicate content