A Net-Zero Home in Massachusetts

Shelburne, MA

Dec 17 2013 By Charles Bado | 7 comments

General Specs and Team

Location: Shelburne, MA
Bedrooms: 3
Bathrooms: 3
Living Space : 2400 sqf
Cost (USD/sq. ft.): $234/sqf

Cost does not include land.

Designer: Omnibus Designs (Charles Bado)

Builder: Omnibus Designs

Energy consultants: Mike Duclos (DEAP Energy Group) and Peter Talmage, P.E.

Insulation contractor: Bryan Hobbs


Foundation: Frost wall and slab on grade

Slab insulation: 4 in. horizontal XPS (R-20) under slab and 4 in. vertical XPS at slab perimeter

Frostwall insulation: 2 in. XPS (R-10) on interior of frostwall

Wall construction: Double-stud walls with load-bearing 2x6s, 16 in. o.c., on the exterior and 2x4s, 16 in. o.c., on the interior

Above-grade wall insulation: 2" closed-cell foam spray foam (R-12) on interior side of wall sheathing plus 10" of dense-packed cellulose (R-34) for a total of R-46.

Wall sheathing and air barrier: ½-in. Zip sheathing with all seams taped

Siding: CertainTeed Weatherboard fiber-cement 5 1/2 in. plank siding

Exterior trim: A combination of fiber-cement trim boards, aluminum coilstock, and PVC.

Windows: Wasco Geneo triple-glazed fixed and tilt/turn units, U-0.16, SHGC 0.39 on east & south, SHGC 0.17 on west.

Roof framing: Roof trusses (creating a vented unconditioned attic)

Roof sheathing: 5/8 in. Zip sheathing with all seams taped

Ceiling insulation: 17 in. blown-in cellulose (R-56)

Ceiling air barrier: Tu-tuff polyethylene vapor barrier and continuous ½ in. drywall

Roofing: Englert 24 ga. standing-seam steel.


Blower-door test: 1.96 ach50

Annual energy use: 6.6 MMBTU (modeled, not measured)

PV system: 30 roof-mounted Bosch C-S- M60 PV modules totaling 7.65 kW; estimated annual output 8,896 kwh; system includes battery backup.

Space heat and cooling: 2 Fujitsu 12RLS2 ductless minisplit heat pumps; heating capacity 16,000 Btu/h; cooling capacity 12,000 Btu/h; supplemented by several 400-wall electric resistance heating panels.

Mechanical ventilation: Zehnder ComfoAir 350 ERV with ComfoFond-L 350 geothermal heat-exchange loop buried under the slab

Domestic hot water: 2 Stiebel Eltron SOL 27 solar thermal collectors connected to a Superstor SSU-80SE 80-gal. storage tank; 4,500-watt electric resistance backup heater.

Water Efficiency

Rainwater collection system

Second-floor bathroom has a hot water recirculating pump on a timer to reduce the amount of water wasted waiting for hot water to reach the faucets

Green Materials and Resource Efficiency

Locally milled black locust lumber was supplied by Blue Sky Farms, Colrain, Mass.

All of the contractors and vendors used for the construction of the home live and have businesses in Franklin County.

With double-stud walls, thick attic insulation, and triple-glazed windows, this home can be heated with just two ductless minisplit units

Before we met, my clients had spent considerable time researching how to build a net-zero home. They read product literature, studied the economics, understood the benefits, and had a pretty intelligent understanding of construction methods and materials. This body of knowledge became the starting point for our discussions and direction.

We took a “whole house” systems approach, refining the design to include building envelopeExterior components of a house that provide protection from colder (and warmer) outdoor temperatures and precipitation; includes the house foundation, framed exterior walls, roof or ceiling, and insulation, and air sealing materials. details, floor plans, and elevations that would work in concert with the mechanical systems, site location, and renewable energy resources. The clients wanted a home that took advantage of natural light, was comfortable in all the New England seasons, and was free of toxic materials and mold.

Low-VOC materials and an ERV preserve indoor air quality

We planned between 2,100 and 2,400 square feet of living space — about the same as their previous home — as well as 1,642 square feet of unconditioned space (attic, garage, basement, and second-floor storage/bonus room).

We planned a double-stud wallConstruction system in which two layers of studs are used to provide a thicker-than-normal wall system so that a lot of insulation can be installed; the two walls are often separated by several inches to reduce thermal bridging through the studs and to provide additional space for insulation. assembly and engineered trusses for the roof framing. Other priority features included: high-performance triple-glazed tilt/turn windows, a quality ERV, non-toxic finishes, and low-maintenance exterior siding and trim. The prominent location — on a hill in an open field close to the road — influenced a style preference: local farmhouse vernacular.

A site with good solar exposure

My clients purchased a five-acre former cornfield in the town of Shelburne, Mass. The site affords wide views over the Pioneer Valley and excellent solar exposure; the photovoltaic(PV) Generation of electricity directly from sunlight. A photovoltaic cell has no moving parts; electrons are energized by sunlight and result in current flow. system installers later confirmed that the site has a 98% solar window. The land slopes in various directions but the ideal house site is relatively flat, albeit constrained slightly by an eastern buffer zone from a nearby pond and property line corner to the west. Given the site conditions — lots of ledge — we opted for a small 10’x18’ basement and an insulated slab on grade with 4-foot frostwalls.

To collect roof rainwater we installed a “ground gutter” — a perforated drain pipe set in a 12-inch deep, poly-lined, stone-filled trench. The drain pipe runs along the perimeter of the house to a 50-gallon plastic storage barrel set up with an overflow pipe to daylight. The future plan is to install a float activated pump that will lift rain water to a larger tank on the hill to the west. Water from this tank can gravity-feed the gardens below.

The rain barrel is enclosed in a well tile with a lid for protection and access. (The volume of roof runoff is estimated at 450 gallons per inch of rain; if we capture 50% of this, the 42-inch annual rainfall for our area could yield approximately 9,753 gallons.)

A frost-wall-and-slab foundation

To create a thermal break at the edge of the floor slab, a band of XPSExtruded polystyrene. Highly insulating, water-resistant rigid foam insulation that is widely used above and below grade, such as on exterior walls and underneath concrete floor slabs. In North America, XPS is made with ozone-depleting HCFC-142b. XPS has higher density and R-value and lower vapor permeability than EPS rigid insulation. foam 4 inches wide and 8 inches high was cast in place during the frostwall pour. After the forms were stripped, a second band of 2-inch XPS was installed vertically down the inside of the frostwall.

After the initial interior backfill, a geothermal loop consisting of coiled polyethylene tubing was buried below grade. A glycol solution circulates through the tubing, which connects to a heat exchangerDevice that transfers heat from one material or medium to another. An air-to-air heat exchanger, or heat-recovery ventilator, transfers heat from one airstream to another. A copper-pipe heat exchanger in a solar water-heater tank transfers heat from the heat-transfer fluid circulating through a solar collector to the potable water in the storage tank. in the fresh air duct of the Zehnder ERV unit. The circulating glycol raises the temperature of the ventilation air during the winter, and lowers the temperature of the ventilation air during the summer.

The passive radonColorless, odorless, short-lived radioactive gas that can seep into homes and result in lung cancer risk. Radon and its decay products emit cancer-causing alpha, beta, and gamma particles. venting system includes a 4-inch perforated pipe, installed over compacted fill and covered with 1-inch stone. The pipe is connected to a roof vent. Over the stone we installed two layers of 2-inch-thick rigid XPS (for a total of R-20) covered with Tu-Tuff polyethylene.

The sill plate is a treated 2x12 except for exterior door locations where the foam is exposed. This was not a problem where we installed tile flooring; however in the main house with floating wood flooring this was something of a weak spot (see Image #17). Next time, I would extend the slab to the edge of the frost wall with only a 1-inch thermal break and provide a solid surface for the flooring.

Three bedrooms, a music room, and a yoga room

The first floor includes an open living and kitchen area, a music room, and an ADA accessible bathroom. The music room could double as a bedroom giving the owners the option to live comfortably on the first floor.

The two south-facing rooms are separated by a central stairway. The first-floor rooms connect to the garage, entry door, and west porch. (See the floor plan at Image #20.)

The second floor includes a master bedroom and bath, a study, a yoga room (which doubles as a spare room), and a guest room connected to another bathroom. The storage room over the garage is unheated and could be finished at a later date as additional living space.

The ceiling of the second floor is insulated, separating the conditioned living space from the unheated attic above. The attic stair opening is covered with an insulated hatch (see Image #9) operated by a worm-drive winch. The winch opens or closes the hatch with a handle or (faster and more conveniently) with a cordless drill.

Where should the mechanical room be located?

Originally I considered including a 10’x10’ mechanical room in the attic, but we discovered through energy modeling that this would put the ratio of exterior walls to floor area over the desirable balance, so the mechanical room was taken out of the equation.

With the insulated room above the stairwell gone, the options were to insulate the second floor walls around the stairs and slope of the stringers or build a hatch above. The hatch seemed the most effective option from an energy standpoint and was subsequently confirmed during our blower door tests.

Exterior walls were framed with 2x6 studs 16 inches on center, sheathed with Zip sheathingMaterial, usually plywood or oriented strand board (OSB), but sometimes wooden boards, installed on the exterior of wall studs, rafters, or roof trusses; siding or roofing installed on the sheathing—sometimes over strapping to create a rainscreen. . The interior side of the wall sheathing and the band joist were insulated with 2 inches of closed-cell spray foam, providing R-valueMeasure of resistance to heat flow; the higher the R-value, the lower the heat loss. The inverse of U-factor. as well as air sealing. The closed-cell foam was installed before any of the electrical, plumbing, or HVAC(Heating, ventilation, and air conditioning). Collectively, the mechanical systems that heat, ventilate, and cool a building. systems were roughed in, making it possible to heat the house during the coldest months of the winter to a comfortable 55 degrees with temporary electric heat — a testament to the effectiveness of just 2 inches of spray foam in the walls.

Connecting the wall air barrier with the ceiling air barrier

Before the attic roof trusses were installed, a 16-inch-wide strip of ¾-inch plywood was nailed and caulked to the top plateIn wood-frame construction, the framing member that forms the top of a wall. In advanced framing, a single top plate is often used in place of the more typical double top plate.. Ceiling strapping was installed to the bottom chords of the roof trusses, and an interior polyethylene vapor barrier was stapled to the ceiling strapping. The polyethylene vapor barrier also acts as an air barrier; it was sealed to the plywood strip where it extends into the room. This technique allowed us to connect the horizontal plane of the ceiling air barrier to the vertical wall sheathing at the top plate (see detail at Image #18.)

The drywall was hung for the entire second-floor ceiling before framing any of the interior partition walls. Wiring penetrations through the top plates and electrical boxes were air sealed prior to installation of blown-in cellulose. Although it required us to install the drywall in two phases, it was much simpler to install one large flat ceiling with full sheets rather than fitting pieces around closets etc. For the flared window wells we added beveled ripped-down strips of 2x lumber to the edge of the openings for drywall nailers, creating sides with 30 degree angles, along with plywood for additional support across the sill.

Raised-heel trusses

The roof was framed with a combination of attic trusses and mono-pitch trusses with 28-inch and 23-inch heel heights. The attic trusses have an 18-inch bottom chord. The wide gable-end overhangs, which continue the line of the eaves, are also mono-pitch trusses.

To match the roof rakes with the eave overhang, we used dropped top chord gable-end trusses with 2x6 fly rafters. Cantilevered over the top of the dropped chord and connected to the inboard truss with joist hangers, the fly rafters make for a strong and relatively simple framing detail for wide overhangs.

The hangers were connected to the inboard truss on the ground, speeding up the installation of the fly rafters from the staging. I calculated the 21-inch width of the overhang using the angle of the sun at our latitude to provide shade in the summer and solar gain in the winter (see Image #19).

Tilt/turn windows with triple glazing

As the floor plans developed, helped by the energy modeling, we sized and located the fixed and operable windows. We found the ideal ratio of glazing to wall area while striking a balance between advantageous views, natural light, and solar gain.

The Wasco Geneo triple-glazed tilt/turn windows have sturdy, generous handles and are easier to operate than casement cranks. Using the “turn” option allows the sash to opens entirely into the room, which is ideal for cleaning. In “tilt” mode the top of the sash opens 5 inches from the top of the frame. This wedge-shaped opening improves fresh air convection into the rooms but protects it in the event of rain. The quality of the latching hardware provides a very tight seal when closed.

The entry doors are made of fiberglass and have a triple-point locking mechanism, providing a better air seal than a single latch. Three of the four exterior doors open onto enclosed spaces — the garage, mud room, and porch — for additional protection in winter.

Two types of siding

Wide corner boards, a wide water table, tall frieze boards, wide overhangs and rake trim were all details used to recreate the “folk Victorian” style that distinguishes the exterior.

The north wing has board-and-batten siding, finished red, to replicate the look of a traditional barn; these details create a deliberate contract with the main house. We accomplished this with a combination of stock fiber-cement trim materials, 2-by kiln-dried lumber wrapped with coil stock, and PVC window casing.

The main house has fiber-cement lap siding and flat fiber-cement panels on the gable ends. We used a similar 4’x8’ panel installed vertically with 1x2 trim strips to create the board-and-batten look for the barn-like north wing.

One concession to natural wood: the west porch has a 6x6 post supporting a roof beam and entry door trim made from naturally rot-resistant black locust (see Image #11).

Paying attention to VOCs

Walls and ceilings are finished with ½-inch drywall painted with zero-VOC paint. The floors of the second-floor rooms are finished with floating cork tile, while the bathroom floors, tub surrounds, and shower surrounds are finished with ceramic tile.

The first-floor living and kitchen areas have engineered yellow birch flooring. Since we installed the birch flooring over a concrete slab, and since we were trying to avoid high-VOC glues, neither nailing nor gluing were options. We opted for a self-adhesive 1/8-inch-thick underlayment called Elastilon, which also adds a cushion over the slab.

After installing a couple of courses of the birch flooring panels, the protective film is removed, allowing the flooring to adhere to the upper surface of the underlayment. This proved to be an excellent option as it is nontoxic and odorless.

An ERV and ductless minisplits

A Zehnder energy-recovery ventilator (ERV) introduces a continuous stream of fresh air to ventilate the house. By allowing moisture to be transferred between the incoming and outgoing air streams, the ERV helps control indoor humidity levels. According to Zehnder, the high-quality ERV filters drastically reduces some airborne pollutants.

Since the ERV pulls stale air from the bathrooms and kitchen, there was no need to install separate bath exhaust fans or a kitchen range hood. Zehnder claims that the unit’s heat-recovery efficiency is 95%. We also installed a geothermal loop to temper the outdoor air before it is distributed. The glycol-filled loop is buried about 16 inches below the double layer of 2-inch XPS foam installed below the slab.

Our HVAC contractor originally proposed installing an 18.2 SEER(SEER) The efficiency of central air conditioners is rated by the Seasonal Energy Efficiency Ratio. The higher the SEER rating of a unit, the more energy efficient it is. The SEER rating is Btu of cooling output during a typical hot season divided by the total electric energy in watt-hours to run the unit. For residential air conditioners, the federal minimum is 13 SEER. For an Energy Star unit, 14 SEER. Manufacturers sell 18-20 SEER units, but they are expensive. , 24,000 BtuBritish thermal unit, the amount of heat required to raise one pound of water (about a pint) one degree Fahrenheit in temperature—about the heat content of one wooden kitchen match. One Btu is equivalent to 0.293 watt-hours or 1,055 joules. /h air-source heat pumpHeat pump that relies on outside air as the heat source and heat sink; not as effective in cold climates as ground-source heat pumps. (for space heating and cooling) with a forced-air distribution system. We concluded that this system, efficient as might be, was oversized for the home’s heating and cooling load and cost more than right-sized equipment.

We decided that two Fujitsu air-source heat pumps were a better fit. A small shed roof was built over the compressors to provide protection from excessive snow which adversely affects the units’ performance. One minisplit head was installed on each floor, centrally located and mounted 30 inches above the floor. (Peter Talmage, one of our energy consultants, recommended this approach, which is closer to the floor than usual, for several reasons. Mounted near the floor, the unit pulls in cooler intake air than it would if it were mounted near the ceiling. The warmed air is blown out across the floor, stirring the cold air at floor level. The warmed air isn’t blowing directly on occupants, reducing comfort complaints from those who are sensitive to moving air. Finally, locating the units near the floor makes it easy to access the air filter for cleaning.)

Ceiling-mounted electric-resistance radiant panels (manufactured by Enerjoy) were installed in the guest and downstairs baths to augment the heat pumps in the coldest months of winter.

Over the course of designing and building this house, I came to appreciate some of the science and economics underpinning zero-energy construction methods. In particular, I concluded that the extra investment in a better building envelope should be offset by savings in HVAC equipment. (For this house, the minisplit units and electric-resistance heaters that we installed cost $14,610 less than the system first proposed by our HVAC contractor.)

Blower-door tests and thermal imaging

We hired Mike Duclos from DEAP Energy Group to evaluate our design and to provide a HERSIndex or scoring system for energy efficiency established by the Residential Energy Services Network (RESNET) that compares a given home to a Home Energy Rating System (HERS) Reference Home based on the 2006 International Energy Conservation Code. A home matching the reference home has a HERS Index of 100. The lower a home’s HERS Index, the more energy efficient it is. A typical existing home has a HERS Index of 130; a net zero energy home has a HERS Index of 0. Older versions of the HERS index were based on a scale that was largely just the opposite in structure--a HERS rating of 100 represented a net zero energy home, while the reference home had a score of 80. There are issues that complicate converting old to new or new to old scores, but the basic formula is: New HERS index = (100 - Old HERS score) * 5. rating. Mike also helped us participate in the Energy StarLabeling system sponsored by the Environmental Protection Agency and the US Department of Energy for labeling the most energy-efficient products on the market; applies to a wide range of products, from computers and office equipment to refrigerators and air conditioners. Tier 3 program, which provided us with a $7,000 cash rebate.

Mike’s initial blower-door test and thermal imaging survey helped us identify most of the air leaks and potential weak spots in the envelope before the drywall was installed. In addition to his testing and inspections, Mike was an invaluable source of technical advice. He could not stress enough the need for effective air sealing.

As a builder who traditionally focused on the R-value of walls and roofs, I have long overlooked the significance of air sealing. (There’s nothing like seeing blower-door data to drive this point home.) Before the job started, I bought a foam applicator gun and used it every time I found a cool spot, a drilled hole, or a leaking seam that needed sealing. The $32 turned out to be an excellent investment.

Lessons Learned

• Open-web floor joists would have allowed for easier installation of ductwork than the I-joists used on this project.

• Ensure adequate spacing (a minimum of 10 inches) between the inside of the gable end walls and the inside face of first joist to allow better access to the band joist.

• It’s best to spray foam the exterior stud bays before building the interior 2x4 stud walls.

• The house ended up with thermal bridging at the perimeter of the slab, especially under exterior door thresholds. A better detail would have included an extension of the slab at door openings and a better thermal break using rigid foam.

• We should have insulated the walls of the basement mechanical room rather than the ceiling.

• We should have performed energy modeling early on during the design phase of the project. Energy modeling wasn’t performed until one month after we had already broken ground; at that point, the plans were mostly fixed. If energy modeling had been performed three months earlier, we would have foreseen the problems associated with locating the mechanical room in the attic.

Charles Bado

Tags: , , , , , ,

Image Credits:

  1. Charles Bado

Dec 17, 2013 4:25 PM ET

What is purpose of the glycol loop slinky heat exchanger?
by Dana Dorsett

Is it ONLY to temper the ventilation air? If yes, did any body do the math/modeling on the pumping power to see if it so much as breaks-even on an energy-use basis?

Heating and cooling with a pair of RLS2s I would expect the pumping power per BTU-saved on the ventilation tempering to have a worse COP than the seasonal averages for the mini-splits.

Dec 18, 2013 7:55 AM ET

Edited Dec 18, 2013 7:56 AM ET.

by Dwight Harris

Great write-up. Thanks for sharing!

I'm surprised that with the combination of zip system, closed cell foam and dense pack cellulose you didn't get a lower ACH value. What do you suspect were the weak spots?

Like Dana, I'd also like to see the math of the geo loop dedicated to the ERV.

Dec 19, 2013 12:10 PM ET

COP of ground loop
by Barry Stephens

A reply to Dana's question on the efficiency of using the ground loop pre-heater. We have seen the COP on these systems during winter months of upwards of 20. We are gathering data, and will be able to publish results for projects in VT, MA, CO and AK shortly. We also used this system in a HVI -25C testing of the CA 550 unit with the ComfoFond-L ground-source unit. We achieved a 99% Apparent Sensible Recovery rate, and a 91% Sensible Recovery Efficiency. That with a very efficient pump that is normally using 8-10 watts of power while running. We also get cooling and dehumidification in the summer, so overall, this system is quite impressive. Of course, I sell them, so take that as you will, until the full set of third-party data is out.

Dec 19, 2013 12:42 PM ET

I look forward to the published results!
by Dana Dorsett

An analysis of the lifecycle energy cost of the system compared to ductless heat pump lifecycle would be useful too, but for now a credible set of data for the average annulized COP would be interesting enough on it's own.

Dec 19, 2013 11:32 PM ET

$234 / square foot?
by Peter L

That's $561,600 for the home and that did not include the cost of the land. That seems awfully expensive for this type of home. The 1.96 ACH50 blower door results were higher than what I would expect on this type of build. Passive House is < 0.60 and I thought for sure this home would be in the < 1.00 range. The 0.39 SHGC on the south windows seems low. I figured it would calculate out to have 0.45 or higher on the SHGC on the south windows.

Just being blunt here but these types of builds will not do much to further motivate the green energy building movement. People are not going to want to buy a home that is $234 / ft² and ends up looking like this.

Dec 20, 2013 8:06 PM ET

Edited Dec 20, 2013 8:07 PM ET.

and ends up looking like this
by Michael M

+1. At any price per sq ft, these homes *must* be more handsome to succeed in anything more than niche. The design is way behind the function. This will not happen without professional help.

Jan 20, 2014 2:51 PM ET

rain water collection
by stephen sheehy

Why spend money for rainwater collection when living with 42 inches of annual rainfall?

Register for a free account and join the conversation

Get a free account and join the conversation!
Become a GBA PRO!