GBA Logo horizontal Facebook LinkedIn Email Pinterest Twitter Instagram YouTube Icon Navigation Search Icon Main Search Icon Video Play Icon Audio Play Icon Headphones Icon Plus Icon Minus Icon Check Icon Print Icon Picture icon Single Arrow Icon Double Arrow Icon Hamburger Icon TV Icon Close Icon Sorted Hamburger/Search Icon
Building Science

Heat Pump Balance Point and the Building Enclosure

The quality of a home’s building enclosure can have a big effect on heating with a heat pump

Gary Nelson stands in front of his ducted minisplit heat pump in Minneapolis, Minnesota. Because of the heat pump capacity and the efficiency of his building enclosure, his balance point is below zero degrees Fahrenheit. [Photo credit: Energy Vanguard]

So we’ve looked at a simple way to estimate the heat pump balance point.  Then I showed how the capacity of the heat pump affects the balance point.  (A larger heat pump lowers the balance point and vice versa.)  Today, let’s look at the other major factor that can affect the balance point.

First, recall that the simple method to find the balance point involved plotting the heating load of the house and heat pump capacity on the same graph.  Using two data points for each and assuming a linear relationship between load/capacity and outdoor temperature, we had two straight lines.  The temperature where they cross is the heat pump balance point.  This point tells you at what outdoor temperature the heat pump is just able to keep the house at the indoor design temperature (normally 70°F).

Now we’re ready to take it further.

The effect of heating load on balance point

One way to change the balance point is to move the heat pump capacity on the graph.  Likewise, we could change the other part of the graph, the heating load, to get a different balance point (assuming we don’t make a compensating change in equipment size).  If you have an existing home and want make it more comfortable and energy-efficient by doing some air sealing and insulating, the house won’t need as much heat.  The house in our example initially had a heating load of about 15,000 BTU/hr.  Let’s say we add some insulation, make it more airtight, and seal the ducts.  Now the load drops to about 10,000 BTU/hr, and we use that as our design temperature heating load point on the graph.

But wait!  There’s more.  In the last article, I assumed that zero load happens at 65°F.  In many homes it may well be lower, especially if the home is airtight and well insulated.  In such a home, the load could easily be zero at 55°F.  That means the heat doesn’t come on until the outdoor temperature is 55°F.

Here’s what the graph looks like now.

By making a house more energy efficient, the heating load goes down and so does the heat pump balance point. (Image by Energy Vanguard)
By making a house more energy-efficient, the heating load goes down — and so does the heat pump balance point. (Image by Energy Vanguard)

The blue line is the capacity of the 1.5 ton heat pump, same as in the first graph, the one in the other article.  But now the orange line is lower, and the two intersect at 17°F now instead of 25°F.  So we’ve dropped the balance point 8 F° by making the home more efficient.

This home now has a balance point right at the design temperature.  That means it doesn’t need any supplemental heat.

The downside of lowering the balance point

Lowering the balance point is great for heating.  If that were the only consideration, we could make the house as efficient as possible and then put in a heat pump big enough to ensure the balance point is below the design temperature.  The problem, however, is that oversizing can have a deleterious effect on cooling, especially in humid climates.  You need equipment sized close to the cooling load to get good dehumidification.  Even in a dry climate, oversizing affects comfort negatively because the system comes on and goes off more frequently (a phenomenon called short-cycling).

Normally, when you make the house more efficient and have a lower heating load, as in the last section, you also put in a smaller heating system.  For conventional fixed-capacity equipment, of course, the smallest heat pump you’ll find is 1.5 ton.  So in that example, we’ve already got the smallest heat pump of that type and can’t go smaller.  As a result, the system will short-cycle most of the time.

Now the heat pump balance point is demystified a bit more for you, I hope.  Of course, there’s also the issue of what the actual balance point is and what kind of equipment you can use to get a low balance point and not have short-cycling.  But those are topics for another time… because I need to go watch this video of a panda rolling in the snow.

 

Allison Bailes of Decatur, Georgia, is a speaker, writer, building science consultant, and the author of the Energy Vanguard Blog. You can follow him on Twitter at @EnergyVanguard.

3 Comments

  1. Sandra Lynn | | #1

    You mention a system thats over sized may short cycle in the summer. Is there a problem with turning it off in the spring and fall? Thats what I do now with a standard gas furnace/ central air. I only use it when its either really hot or cold outside. Does a heat pump system malfunction if left off for a few months at a time? I am considering getting a split system for a new house I will be building. So I am trying to get as much info as I can before I decide what to do.

    1. User avater
      Stephen Sheehy | | #2

      We shut our minisplits off in April and don't turn them on until we get a few super hot days in summer, if we use them at all until Fall. I don't think it hurts anything to shut them off.

      1. Sandra Lynn | | #3

        Thanks!

Log in or create an account to post a comment.

Related

Community

Recent Questions and Replies

  • |
  • |
  • |
  • |